Diffusion of a density in a static fluid

u(x,y, z, t), density (M/L3) of a substance (dye). Diffusion:
motion of particles from places where the density is higher to
places where it is lower, due to random independent motion
(http://en.wikipedia.org/wiki/Diffusion).

Ficks law (1870): flux vector

J =—-— D Vu,
~— ~— ~~
M/(TL2) L2/T M/L*

where [¢J-n dS (M/T)is the net flux of mass per unit time
crossing X in the direction of n. D: diffusivity.
Balance of mass:

d/ udy=— J-nds+/ g dv,
at Jo, 09 Qy ~~

reaction

ur =V -(DVu)+ g, diffusion equation.
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u=V-(DVu)+g

@ D = Dy, Laplacian, linear diffusion.

@ D=D(u)= Dymu™-1, porous medium equation, m > 1.

@ D = D(Vu) = Dy|VulP~" p-laplacian, p > 2.

@ g = g(u) (kinetics), reaction-diffusion equation. The
reaction part is the ODE

au
at g(u).
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1-dimensional random walk (Bachelier, 1900, finance)

A particle moves in a net {x = x; = ih;i € Z} C R jumping each
At either left or right with probability 1/2 (h, At > 0). Let u(x, f)
be the probability that the particle occupies the position x at
time t.

u(x,t+ At) = %[u(x + h,t) + u(x — h, t)]
u(x,t+ At —u(x,t) W u(x+ht) —2u(x,t) + u(x — h,t)

At 2At h2

If h — 0 and At — 0 with h?/(2At) — Dy (better with the
density v’ = u/h), then we get

Ut - DOUXX~

Observe that if i2/(2At) — Dy > 0 then the speed h/ At — oc.
Observe h ~ v At.
This deduction gives an interpretation for the diffusivity Dy.
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Observe that if [*_u dx = 1 initially, then the same will hold in
the future.

The same deduction holds when u(x, t) is the density of
individuals between x — h/2 and x + h/2 (the number of
individuals being then hu) at time f when half of them jump right
and half of them jump left each At.

Then, the total population [ u dx is no longer restricted to be
1, but can be arbitrary (positive).
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Problem 2.1: Suppose that a particle in R” moves in the net
{(ith, ioh, ... iph); j; € Z} and jumps every At from one point to
one of its neighbours (along one of the axes) with a probability
1/(2n). Deduce u; = DyV2u and state the hypotheses on how
h— 0and At — 0.

Problem 2.2 : (anisotropic diffusion) Consider the situation of
the previous problem for n = 2 and supose that the probability
of jumping leftis d/2, right is d/2, up is (1 — d)/2 and down is
(1 —d)/2, forsome 0 < d < 1. Write the limit equation in the

form u; = V - MpVu, where now M, is a 2 x 2 matrix.

Problem 2.3: Suppose a particle moves in a 1-dimensional net
{x =x;=ih;i € Z} C R, and each At either remains in its
place with a probability (1 — d), or with a probability d jumps
either left or right with probability d/2. We suppose 0 < d < 1.
Deduce u; = Dyuxx, for some Dy and state the hypotheses.
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Heat Conduction, Fourier’'s Law

Heat conduction in an equilibrium isotropic solid.

u, temperature (degrees); Q is the heat density
(energy/volume); p, density (mass/volume); C heat capacity
(specific heat) (energy/(temperature xmass)).

Q = pCu.

The quantities v and Q, the unknowns, depend on space and
time. In non-homogeneous solids also p and C can depend on
X, or, in more realistic but complicate situations, also on u. The
total heat in Qg is

Qq, = Qav.

Qo
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One postulates the existence of a flux vector q (energy/(area x
time)) whose integral gives us the net heat flux:

a QadV =-— q-ndS+ fay.
at Jq, %% Q
N —
conduction generation

Fourier’s Law(1822): (isotropic case)
q=—kVu,

where k is the thermal conductivity (large in metals, low in
isolating materials).

pCu; =V - (kVu) + f heat equation.

If p, C, k are constants and f = 0 then u; = DV2u, where
D = k/(pC) is the thermal diffusivity.
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A self-similar solution

A solution of u; = Duyy of the form u = ¢(r(t)x), with ¢
bounded. We use the new variables ¢ = rx and t, and the
special function erf(z) f NG * do and obtain
(Problem 2.4: make this calculation)

Uso + Uy Usg — U_oo

erf( X >
2 2 2vDt)’

whose initial condition is

o
u(x,O):{U orx <0

u(x,t) =

U, forx >0
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Take u_oo =0, U, =1 and D =1, then

U(x,t) :%—k 1 erf (2\[>

We see that U(x,0) = 0 for x < 0, but U > 0 for t > 0 (infinite
speed of propagation). The same happens with
U(x —a,t) — U(x — b, t). We see also the irreversibility of the
diffusion.
Observe that the Gaussian

1 2

G(x,t) = Uy = e @
(1) X 47t

satisfies ffooo G(x,t) dx =1 and has as its initial condition
Dirac’s §-function. From here, Poisson’s formula

= x)2

u(x,t) u(x’,0) dx

-]
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Also, in 2 dimensions, U(x)U(y) is also a solution of
Ut = Uxx + Uyy, and we get (in n dimensions)

/112
[Ix—=x"]|

u(x,t):W /R e, 0) av(x).

Problem 2.5: Deduce this last formula from what we know
about G(x, t).

Problem 2.6: Are there more (bounded) solutions of u; = uyy of
the form u = r(t)p(r(t)x) apart from G(x, t)?
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A. Einstein calculation on Brownian motion (1905)

Suppose X(t) is a random variable depending on time (a
random process) such that

X(t) + h with probability d/2
X(t+ At) =< X(1) with probability (1 — d)
X(t) — h with probability d/2

forsome 0 < d < 1.

A. Einstein claim (1905): The (net) displacement is not
proportional to the elapsed time, but to its square root
(supposing At, h < 1).
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Proof. Supposing At and h small and defining D = dh?/(2At),
the position of the particle at time t has a pdf u(x, t) such that

Ut = Duxy

(one of the problems above), and since the initial pdf is a Dirac
delta function then

_ i
e in.

u(x,t) =

1
varDt

So, the average square of the net displacement is

_ S8 X2 2
X2 = / e i = 2Dt,
—00 47['Dt

Problem 2.7: Check the last equality. That was the expected
value of x2. Calculate the expected value of |x|. Check also that
X(t) — X(s) ~ N(0,2D(t — s)) (normal distribution, N'(u, 02)).
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Einstein calculation, in other words, says that the variance of
X(1) is 02 = 2D. This is the reason of the probabilistic tradition
of writing the diffusion equation as u; = ";uxx.

Einstein’s calculation was used (by him) to support atomic
theory and to calculate Avogadro’s number.

https://en.wikipedia.org/wiki/Brownian_motion
https://en.wikipedia.org/wiki/Louis_Bachelier
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Diffusion and advection

By adding to Fick’s law the flux due to advection by a velocity
field v(x, t) one gets

J=-DVu+uv
and the advection-diffusion equation

ur+ V- (uv) = DV2u.
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